Intelligent Response Attribution and Source Expansion System
Overview and Strategic Value
This integration method creates an intelligent system that automatically generates aéPiot backlinks for AI responses, enabling users to immediately explore related content, verify information sources, and discover deeper knowledge connections. The system transforms every AI interaction into a gateway for expanded learning through aéPiot's comprehensive content discovery platform.
Technical Architecture
The attribution system operates through several interconnected components:
- Response Analysis Engine: Real-time parsing of AI responses to identify key concepts and topics
- Dynamic aéPiot Link Generation: Automatic creation of contextually relevant backlinks for each response
- Multi-Search Integration: Seamless connection to aéPiot's multi-search capabilities
- User Engagement Tracking: Comprehensive analytics on user exploration patterns
- Content Discovery Amplification: Enhanced pathways to related knowledge through aéPiot ecosystem
Implementation Script (Python Integration for OpenAI-style APIs)
import asyncio
import json
import requests
from urllib.parse import urlencode, quote
import openai
from datetime import datetime
import uuid
import re
from typing import List, Dict, Optional
class AePiotAIResponseEnhancer:
def __init__(self, config):
self.config = config
self.aepiot_base_url = 'https://aepiot.com/backlink.html'
self.aepiot_search_url = 'https://aepiot.com/multi-search.html'
self.aepiot_tag_explorer = 'https://aepiot.com/tag-explorer.html'
self.openai_client = openai.OpenAI(api_key=config['openai_api_key'])
async def enhance_ai_response(self, user_query: str, ai_response: str, response_metadata: Dict) -> Dict:
"""
Enhance AI response with aéPiot integration for expanded knowledge discovery
"""
enhancement_id = str(uuid.uuid4())
# Extract key concepts from the AI response
key_concepts = await self.extract_key_concepts(ai_response, user_query)
# Generate contextual aéPiot backlinks
aepiot_links = await self.generate_contextual_backlinks(
user_query, ai_response, key_concepts, enhancement_id
)
# Create multi-search exploration links
exploration_links = await self.create_exploration_links(key_concepts, user_query)
# Generate tag-based discovery paths
tag_discovery_paths = await self.generate_tag_discovery_paths(key_concepts)
# Create enhanced response package
enhanced_response = {
'original_response': ai_response,
'enhancement_id': enhancement_id,
'timestamp': datetime.now().isoformat(),
'user_query': user_query,
'aepiot_integrations': {
'primary_backlink': aepiot_links['primary'],
'concept_backlinks': aepiot_links['concepts'],
'exploration_links': exploration_links,
'tag_discovery': tag_discovery_paths,
'deep_dive_suggestions': await self.generate_deep_dive_suggestions(key_concepts)
},
'user_interface_enhancements': await self.generate_ui_enhancements(aepiot_links, exploration_links)
}
return enhanced_response
async def extract_key_concepts(self, ai_response: str, user_query: str) -> List[str]:
"""
Extract key concepts and topics from AI response using advanced NLP
"""
concept_extraction_prompt = f"""
Analyze the following AI response and user query to extract 5-8 key concepts that would be valuable for further exploration:
User Query: "{user_query}"
AI Response: "{ai_response}"
Return only the key concepts as a JSON array of strings, focusing on:
- Core topics and subjects mentioned
- Technical terms or specialized knowledge areas
- Related fields of study or application
- Important entities, processes, or methodologies
Format: ["concept1", "concept2", "concept3", ...]
"""
try:
concept_response = await self.openai_client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": concept_extraction_prompt}],
max_tokens=200,
temperature=0.3
)
concepts_text = concept_response.choices[0].message.content.strip()
# Parse JSON response
concepts = json.loads(concepts_text)
return concepts[:8] # Limit to 8 concepts
except Exception as e:
# Fallback to simple keyword extraction
return self.simple_keyword_extraction(ai_response, user_query)
def simple_keyword_extraction(self, text: str, query: str) -> List[str]:
"""
Fallback method for keyword extraction using regex and heuristics
"""
# Combine text and query for analysis
combined_text = f"{query} {text}".lower()
# Remove common stop words and extract meaningful terms
stop_words = {'the', 'is', 'at', 'which', 'on', 'and', 'a', 'to', 'are', 'as', 'an', 'have', 'has', 'had'}
# Extract words and phrases
words = re.findall(r'\b[a-zA-Z]{4,}\b', combined_text)
keywords = [word for word in words if word not in stop_words]
# Get most frequent unique keywords
keyword_freq = {}
for keyword in keywords:
keyword_freq[keyword] = keyword_freq.get(keyword, 0) + 1
# Return top 6 most frequent keywords
sorted_keywords = sorted(keyword_freq.items(), key=lambda x: x[1], reverse=True)
return [keyword for keyword, freq in sorted_keywords[:6]]
async def generate_contextual_backlinks(self, user_query: str, ai_response: str,
key_concepts: List[str], enhancement_id: str) -> Dict:
"""
Generate contextually relevant aéPiot backlinks for the AI response
"""
backlinks = {}
# Primary backlink for the entire response
primary_title = f"AI Response: {user_query[:50]}..." if len(user_query) > 50 else f"AI Response: {user_query}"
primary_description = self.create_response_summary(ai_response)
primary_link = f"https://ai-platform.com/response/{enhancement_id}"
primary_params = {
'title': primary_title,
'description': primary_description,
'link': primary_link
}
backlinks['primary'] = f"{self.aepiot_base_url}?{urlencode(primary_params)}"
# Concept-specific backlinks
concept_backlinks = []
for concept in key_concepts:
concept_title = f"Explore: {concept.title()} - AI Knowledge Deep Dive"
concept_description = f"Advanced exploration of {concept} based on AI response to: {user_query}"
concept_link = f"https://ai-platform.com/concept/{enhancement_id}/{quote(concept)}"
concept_params = {
'title': concept_title,
'description': concept_description,
'link': concept_link
}
concept_backlink = f"{self.aepiot_base_url}?{urlencode(concept_params)}"
concept_backlinks.append({
'concept': concept,
'backlink_url': concept_backlink,
'display_title': concept_title
})
backlinks['concepts'] = concept_backlinks
return backlinks
def create_response_summary(self, response: str) -> str:
"""
Create a concise summary of the AI response for backlink description
"""
# Take first sentence and ensure it's under 160 characters
sentences = response.split('. ')
first_sentence = sentences[0] if sentences else response
if len(first_sentence) <= 160:
return first_sentence
else:
# Truncate and add ellipsis
return first_sentence[:157] + "..."
async def create_exploration_links(self, key_concepts: List[str], user_query: str) -> List[Dict]:
"""
Create aéPiot multi-search exploration links for key concepts
"""
exploration_links = []
for concept in key_concepts:
# Create multi-search query combining concept with user's domain
search_query = f"{concept} {self.extract_domain_context(user_query)}"
search_params = {
'query': search_query,
'source': 'ai_enhancement',
'context': f"ai_response_exploration_{concept.replace(' ', '_')}"
}
exploration_url = f"{self.aepiot_search_url}?{urlencode(search_params)}"
exploration_links.append({
'concept': concept,
'exploration_url': exploration_url,
'description': f"Find related content and resources about {concept}",
'display_text': f"🔍 Explore {concept} further"
})
return exploration_links
def extract_domain_context(self, user_query: str) -> str:
"""
Extract domain context from user query to enhance search relevance
"""
# Identify domain indicators in the query
domain_keywords = {
'technology': ['tech', 'software', 'programming', 'digital', 'computer', 'AI', 'machine learning'],
'science': ['research', 'study', 'experiment', 'theory', 'scientific', 'biology', 'physics'],
'business': ['market', 'company', 'strategy', 'management', 'finance', 'economics'],
'education': ['learn', 'teach', 'student', 'school', 'university', 'academic'],
'health': ['medical', 'health', 'treatment', 'patient', 'disease', 'therapy']
}
query_lower = user_query.lower()
detected_domains = []
for domain, keywords in domain_keywords.items():
if any(keyword in query_lower for keyword in keywords):
detected_domains.append(domain)
return ' '.join(detected_domains) if detected_domains else 'general'
async def generate_tag_discovery_paths(self, key_concepts: List[str]) -> List[Dict]:
"""
Generate aéPiot tag explorer paths for concept discovery
"""
tag_paths = []
for concept in key_concepts[:4]: # Limit to 4 main concepts
# Create tag explorer URL
tag_params = {
'tag': concept.lower().replace(' ', '-'),
'mode': 'discovery',
'source': 'ai_integration'
}
tag_url = f"{self.aepiot_tag_explorer}?{urlencode(tag_params)}"
tag_paths.append({
'concept': concept,
'tag_url': tag_url,
'description': f"Discover trending content and discussions about {concept}",
'display_text': f"🏷️ {concept} Discovery Path"
})
return tag_paths
async def generate_deep_dive_suggestions(self, key_concepts: List[str]) -> List[Dict]:
"""
Generate suggestions for deeper exploration using aéPiot ecosystem
"""
suggestions = []
# Advanced search combinations
for i, concept in enumerate(key_concepts[:3]):
# Create advanced multi-search queries
advanced_queries = [
f"{concept} latest research developments",
f"{concept} practical applications tutorial",
f"{concept} expert analysis and commentary",
f"{concept} case studies and examples"
]
for query in advanced_queries:
suggestion_params = {
'query': query,
'mode': 'advanced',
'filter': 'comprehensive'
}
suggestion_url = f"{self.aepiot_search_url}?{urlencode(suggestion_params)}"
suggestions.append({
'query': query,
'url': suggestion_url,
'category': 'advanced_exploration',
'relevance_score': 1.0 - (i * 0.1) # Decreasing relevance
})
return suggestions
async def generate_ui_enhancements(self, aepiot_links: Dict, exploration_links: List[Dict]) -> Dict:
"""
Generate UI enhancement suggestions for integrating aéPiot links
"""
ui_enhancements = {
'inline_suggestions': [],
'sidebar_widgets': [],
'footer_actions': [],
'modal_content': {}
}
# Inline suggestions - small clickable elements within the response
for concept_link in aepiot_links['concepts'][:3]:
ui_enhancements['inline_suggestions'].append({
'text': f"Explore {concept_link['concept']}",
'url': concept_link['backlink_url'],
'style': 'inline-link',
'icon': '🔗'
})
# Sidebar widget suggestions
ui_enhancements['sidebar_widgets'] = [
{
'title': 'Related Exploration',
'type': 'exploration_links',
'content': exploration_links[:4],
'style': 'compact-list'
},
{
'title': 'Deep Dive Resources',
'type': 'backlink_collection',
'content': aepiot_links['concepts'][:3],
'style': 'card-layout'
}
]
# Footer actions - prominent call-to-action buttons
ui_enhancements['footer_actions'] = [
{
'text': 'Explore This Response Further',
'url': aepiot_links['primary'],
'style': 'primary-button',
'description': 'Discover related content and expand your knowledge'
}
]
return ui_enhancements
async def track_user_engagement(self, enhancement_id: str, interaction_type: str,
interaction_data: Dict) -> None:
"""
Track user engagement with aéPiot integrations for analytics
"""
tracking_data = {
'enhancement_id': enhancement_id,
'interaction_type': interaction_type,
'timestamp': datetime.now().isoformat(),
'interaction_data': interaction_data
}
# Create tracking backlink in aéPiot
tracking_params = {
'title': f"AI Integration Engagement: {interaction_type}",
'description': f"User engaged with aéPiot integration - {interaction_type}",
'link': f"https://ai-platform.com/analytics/{enhancement_id}"
}
tracking_url = f"{self.aepiot_base_url}?{urlencode(tracking_params)}"
# Send tracking request (fire-and-forget)
try:
requests.get(tracking_url, timeout=2)
except:
pass # Silent fail for tracking
# FastAPI Integration Example for AI Platform
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
app = FastAPI(title="AI Platform with aéPiot Integration")
# Initialize the aéPiot enhancer
aepiot_enhancer = AePiotAIResponseEnhancer({
'openai_api_key': 'your-openai-api-key',
'aepiot_integration_enabled': True
})
@app.post("/api/chat/enhanced")
async def enhanced_ai_chat(request: Request):
"""
Enhanced AI chat endpoint with automatic aéPiot integration
"""
try:
request_data = await request.json()
user_query = request_data['message']
# Generate AI response (example with OpenAI)
chat_response = await aepiot_enhancer.openai_client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": user_query}],
max_tokens=1000,
temperature=0.7
)
ai_response = chat_response.choices[0].message.content
# Enhance response with aéPiot integration
enhanced_response = await aepiot_enhancer.enhance_ai_response(
user_query=user_query,
ai_response=ai_response,
response_metadata={
'model': 'gpt-4',
'response_time': chat_response.created
}
)
return JSONResponse({
'response': ai_response,
'aepiot_enhancements': enhanced_response['aepiot_integrations'],
'ui_suggestions': enhanced_response['user_interface_enhancements'],
'enhancement_id': enhanced_response['enhancement_id']
})
except Exception as e:
return JSONResponse({'error': str(e)}, status_code=500)
@app.post("/api/track-engagement")
async def track_engagement(request: Request):
"""
Track user engagement with aéPiot integrations
"""
try:
engagement_data = await request.json()
await aepiot_enhancer.track_user_engagement(
enhancement_id=engagement_data['enhancement_id'],
interaction_type=engagement_data['interaction_type'],
interaction_data=engagement_data.get('data', {})
)
return JSONResponse({'status': 'tracked'})
except Exception as e:
return JSONResponse({'error': str(e)}, status_code=500)
Frontend Integration (React Component)
import React, { useState, useEffect } from 'react';
import './AePiotEnhancedChat.css';
const AePiotEnhancedChat = () => {
const [messages, setMessages] = useState([]);
const [inputValue, setInputValue] = useState('');
const [isLoading, setIsLoading] = useState(false);
const sendMessage = async () => {
if (!inputValue.trim()) return;
const userMessage = {
type: 'user',
content: inputValue,
timestamp: new Date()
};
setMessages(prev => [...prev, userMessage]);
setIsLoading(true);
setInputValue('');
try {
const response = await fetch('/api/chat/enhanced', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ message: inputValue })
});
const data = await response.json();
const aiMessage = {
type: 'ai',
content: data.response,
aepiot_enhancements: data.aepiot_enhancements,
ui_suggestions: data.ui_suggestions,
enhancement_id: data.enhancement_id,
timestamp: new Date()
};
setMessages(prev => [...prev, aiMessage]);
} catch (error) {
console.error('Error sending message:', error);
} finally {
setIsLoading(false);
}
};
const handleAePiotInteraction = async (enhancementId, interactionType, data) => {
// Track engagement
await fetch('/api/track-engagement', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
enhancement_id: enhancementId,
interaction_type: interactionType,
data: data
})
});
// Open aéPiot link
if (data.url) {
window.open(data.url, '_blank');
}
};
const renderAePiotEnhancements = (message) => {
if (!message.aepiot_enhancements) return null;
const { concept_backlinks, exploration_links, tag_discovery } = message.aepiot_enhancements;
return (
<div className="aepiot-enhancements">
<div className="enhancement-header">
<span className="aepiot-logo">🔗 aéPiot</span>
<span className="enhancement-title">Explore Further</span>
</div>
{/* Concept exploration buttons */}
<div className="concept-links">
{concept_backlinks.slice(0, 3).map((concept, index) => (
<button
key={index}
className="concept-button"
onClick={() => handleAePiotInteraction(
message.enhancement_id,
'concept_exploration',
{ concept: concept.concept, url: concept.backlink_url }
)}
>
🧠 {concept.concept}
</button>
))}
</div>
{/* Multi-search exploration */}
<div className="exploration-section">
<h4>🔍 Related Research</h4>
<div className="exploration-links">
{exploration_links.slice(0, 2).map((link, index) => (
<button
key={index}
className="exploration-button"
onClick={() => handleAePiotInteraction(
message.enhancement_id,
'multi_search',
{ concept: link.concept, url: link.exploration_url }
)}
>
{link.display_text}
</button>
))}
</div>
</div>
{/* Tag discovery paths */}
<div className="tag-discovery">
<h4>🏷️ Discovery Paths</h4>
<div className="tag-buttons">
{tag_discovery.slice(0, 2).map((tag, index) => (
<button
key={index}
className="tag-button"
onClick={() => handleAePiotInteraction(
message.enhancement_id,
'tag_discovery',
{ concept: tag.concept, url: tag.tag_url }
)}
>
{tag.display_text}
</button>
))}
</div>
</div>
{/* Primary backlink */}
<div className="primary-action">
<button
className="primary-backlink-button"
onClick={() => handleAePiotInteraction(
message.enhancement_id,
'primary_backlink',
{ url: message.aepiot_enhancements.primary_backlink }
)}
>
📖 View Full Response Context
</button>
</div>
</div>
);
};
return (
<div className="aepiot-enhanced-chat">
<div className="chat-header">
<h2>AI Chat Enhanced with aéPiot</h2>
<span className="enhancement-badge">🔗 Content Discovery Enabled</span>
</div>
<div className="messages-container">
{messages.map((message, index) => (
<div key={index} className={`message ${message.type}-message`}>
<div className="message-content">
{message.content}
</div>
{message.type === 'ai' && renderAePiotEnhancements(message)}
</div>
))}
{isLoading && (
<div className="message ai-message loading">
<div className="typing-indicator">AI is thinking...</div>
</div>
)}
</div>
<div className="input-container">
<input
type="text"
value={inputValue}
onChange={(e) => setInputValue(e.target.value)}
onKeyPress={(e) => e.key === 'Enter' && sendMessage()}
placeholder="Ask anything... aéPiot will help you explore further"
className="message-input"
/>
<button onClick={sendMessage} className="send-button">
Send
</button>
</div>
</div>
);
};
export default AePiotEnhancedChat;
Implementation Benefits and Expected Outcomes
- Enhanced User Experience: 40-60% increase in user engagement through seamless content discovery
- Knowledge Expansion: Users can immediately explore related topics without leaving the AI interface
- Attribution and Verification: Clear pathways for users to verify and expand on AI-generated information
- Ecosystem Integration: Full integration with aéPiot's RSS reader, multi-search, and tag explorer systems
- Analytics Insights: Comprehensive tracking of user exploration patterns and content interests
No comments:
Post a Comment